Paper & Forest Products
Reproducibility Companion Paper: Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems
Li, Yuyuan, Fang, Junjie, Chen, Chaochao, Zheng, Xiaolin, Zhang, Yizhao, Han, Zhongxuan
In this paper, we reproduce the experimental results presented in our previous work titled "Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems," which was published in the proceedings of the 31st ACM International Conference on Multimedia. This paper aims to validate the effectiveness of our proposed method and help others reproduce our experimental results. We provide detailed descriptions of our preprocessed datasets, source code structure, configuration file settings, experimental environment, and reproduced experimental results.
Optimizing Product Provenance Verification using Data Valuation Methods
Yousuf, Raquib Bin, Just, Hoang Anh, Xu, Shengzhe, Mayer, Brian, Deklerck, Victor, Truszkowski, Jakub, Simeone, John C., Saunders, Jade, Lu, Chang-Tien, Jia, Ruoxi, Ramakrishnan, Naren
Determining and Determining and verifying product provenance remains a critical verifying product provenance is a challenge in global supply chains, challenge in global supply chains, particularly as geopolitical conflicts as geopolitics and the lure of "don't ask, don't tell" with respect to and shifting borders create new incentives for misrepresentation the ecological and social cost creates incentives for misrepresentation of commodities, such as hiding the origin of illegally harvested of commodities, such as hiding the origin of illegally harvested timber or agriculture grown on illegally cleared land. Stable Isotope timber or agriculture grown on illegally cleared land. Ratio Analysis (SIRA), combined with Gaussian process regressionbased Product identification and provenance verification of traded natural isoscapes, has emerged as a powerful tool for geographic resources have emerged as promising research areas, with origin verification. However, the effectiveness of these models is often various combinations of methods used based on the specific natural constrained by data scarcity and suboptimal dataset selection. In resource sector and the level of granularity of species identification this work, we introduce a novel data valuation framework designed and origin-provenance determination. For example, for wood and to enhance the selection and utilization of training data for machine forest products, determining species identification and geographic learning models applied in SIRA. By prioritizing high-informative harvest provenance requires utilizing multiple testing methods and samples, our approach improves model robustness and predictive tools [5, 8, 20].
Chasing the Timber Trail: Machine Learning to Reveal Harvest Location Misrepresentation
Sarkar, Shailik, Yousuf, Raquib Bin, Wang, Linhan, Mayer, Brian, Mortier, Thomas, Deklerck, Victor, Truszkowski, Jakub, Simeone, John C., Norman, Marigold, Saunders, Jade, Lu, Chang-Tien, Ramakrishnan, Naren
Illegal logging poses a significant threat to global biodiversity, climate stability, and depresses international prices for legal wood harvesting and responsible forest products trade, affecting livelihoods and communities across the globe. Stable isotope ratio analysis (SIRA) is rapidly becoming an important tool for determining the harvest location of traded, organic, products. The spatial pattern in stable isotope ratio values depends on factors such as atmospheric and environmental conditions and can thus be used for geographic origin identification. We present here the results of a deployed machine learning pipeline where we leverage both isotope values and atmospheric variables to determine timber harvest location. Additionally, the pipeline incorporates uncertainty estimation to facilitate the interpretation of harvest location determination for analysts. We present our experiments on a collection of oak (Quercus spp.) tree samples from its global range. Our pipeline outperforms comparable state-of-the-art models determining geographic harvest origin of commercially traded wood products, and has been used by European enforcement agencies to identify harvest location misrepresentation. We also identify opportunities for further advancement of our framework and how it can be generalized to help identify the origin of falsely labeled organic products throughout the supply chain.
Augmented Carpentry: Computer Vision-assisted Framework for Manual Fabrication
Settimi, Andrea, Gamerro, Julien, Weinand, Yves
Ordinary electric woodworking tools are integrated into a multiple-object-aware augmented framework to assist operators in fabrication tasks. This study presents an advanced evaluation of the developed open-source fabrication software Augmented Carpentry (AC), focusing on the technical challenges, potential bottlenecks, and precision of the proposed system, which is designed to recognize both objects and tools. In the workflow, computer vision tools and sensors implement inside-out tracking techniques for the retrofitting tools. This method enables operators to perform precise saw-cutting and drilling tasks using computer-generated feedback. In the design and manufacturing process pipeline, manual fabrication tasks are performed directly from the computer-aided design environment, as computer numerical control machines are widely used in the timber construction industry. Traditional non-digital methods employing execution drawings, markings, and jigs can now be replaced, and manual labor can be directly integrated into the digital value chain. First, this paper introduces the developed methodology and explains its devices and functional phases in detail. Second, the fabrication methodology is evaluated by experimentally scanning the produced one-to-one scale mock-up elements and comparing the discrepancies with their respective three-dimensional execution models. Finally, improvements and limitations in the tool-aware fabrication process, as well as the potential impact of AC in the digital timber fabrication landscape, are discussed.
Reinforcement Learning Constrained Beam Search for Parameter Optimization of Paper Drying Under Flexible Constraints
Chen, Siyuan, Yu, Hanshen, Yagoobi, Jamal, Shao, Chenhui
Existing approaches to enforcing design constraints in Reinforcement Learning (RL) applications often rely on training-time penalties in the reward function or training/inference-time invalid action masking, but these methods either cannot be modified after training, or are limited in the types of constraints that can be implemented. To address this limitation, we propose Reinforcement Learning Constrained Beam Search (RLCBS) for inference-time refinement in combinatorial optimization problems. This method respects flexible, inference-time constraints that support exclusion of invalid actions and forced inclusion of desired actions, and employs beam search to maximize sequence probability for more sensible constraint incorporation. RLCBS is extensible to RL-based planning and optimization problems that do not require real-time solution, and we apply the method to optimize process parameters for a novel modular testbed for paper drying. An RL agent is trained to minimize energy consumption across varying machine speed levels by generating optimal dryer module and air supply temperature configurations. Our results demonstrate that RLCBS outperforms NSGA-II under complex design constraints on drying module configurations at inference-time, while providing a 2.58-fold or higher speed improvement.
Planing It by Ear: Convolutional Neural Networks for Acoustic Anomaly Detection in Industrial Wood Planers
Deschรชnes, Anthony, Georges, Rรฉmi, Subakan, Cem, Ugulino, Bruna, Henry, Antoine, Morin, Michael
In recent years, the wood product industry has been facing a skilled labor shortage. The result is more frequent sudden failures, resulting in additional costs for these companies already operating in a very competitive market. Moreover, sawmills are challenging environments for machinery and sensors. Given that experienced machine operators may be able to diagnose defects or malfunctions, one possible way of assisting novice operators is through acoustic monitoring. As a step towards the automation of wood-processing equipment and decision support systems for machine operators, in this paper, we explore using a deep convolutional autoencoder for acoustic anomaly detection of wood planers on a new real-life dataset. Specifically, our convolutional autoencoder with skip connections (Skip-CAE) and our Skip-CAE transformer outperform the DCASE autoencoder baseline, one-class SVM, isolation forest and a published convolutional autoencoder architecture, respectively obtaining an area under the ROC curve of 0.846 and 0.875 on a dataset of real-factory planer sounds. Moreover, we show that adding skip connections and attention mechanism under the form of a transformer encoder-decoder helps to further improve the anomaly detection capabilities.
Time Series Foundational Models: Their Role in Anomaly Detection and Prediction
Shyalika, Chathurangi, Bagga, Harleen Kaur, Bhatt, Ahan, Prasad, Renjith, Ghazo, Alaa Al, Sheth, Amit
Time series foundational models (TSFM) have gained prominence in time series forecasting, promising state-of-the-art performance across various applications. However, their application in anomaly detection and prediction remains underexplored, with growing concerns regarding their black-box nature, lack of interpretability and applicability. This paper critically evaluates the efficacy of TSFM in anomaly detection and prediction tasks. We systematically analyze TSFM across multiple datasets, including those characterized by the absence of discernible patterns, trends and seasonality. Our analysis shows that while TSFMs can be extended for anomaly detection and prediction, traditional statistical and deep learning models often match or outperform TSFM in these tasks. Additionally, TSFMs require high computational resources but fail to capture sequential dependencies effectively or improve performance in few-shot or zero-shot scenarios. \noindent The preprocessed datasets, codes to reproduce the results and supplementary materials are available at https://github.com/smtmnfg/TSFM.
Explainable few-shot learning workflow for detecting invasive and exotic tree species
Gevaert, Caroline M., Pedro, Alexandra Aguiar, Ku, Ou, Cheng, Hao, Chandramouli, Pranav, Javan, Farzaneh Dadrass, Nattino, Francesco, Georgievska, Sonja
Deep Learning methods are notorious for relying on extensive labeled datasets to train and assess their performance. This can cause difficulties in practical situations where models should be trained for new applications for which very little data is available. While few-shot learning algorithms can address the first problem, they still lack sufficient explanations for the results. This research presents a workflow that tackles both challenges by proposing an explainable few-shot learning workflow for detecting invasive and exotic tree species in the Atlantic Forest of Brazil using Unmanned Aerial Vehicle (UAV) images. By integrating a Siamese network with explainable AI (XAI), the workflow enables the classification of tree species with minimal labeled data while providing visual, case-based explanations for the predictions. Results demonstrate the effectiveness of the proposed workflow in identifying new tree species, even in data-scarce conditions. With a lightweight backbone, e.g., MobileNet, it achieves a F1-score of 0.86 in 3-shot learning, outperforming a shallow CNN. A set of explanation metrics, i.e., correctness, continuity, and contrastivity, accompanied by visual cases, provide further insights about the prediction results. This approach opens new avenues for using AI and UAVs in forest management and biodiversity conservation, particularly concerning rare or under-studied species.
Timber! Poisoning Decision Trees
Calzavara, Stefano, Cazzaro, Lorenzo, Vettori, Massimo
We present Timber, the first white-box poisoning attack targeting decision trees. Timber is based on a greedy attack strategy leveraging sub-tree retraining to efficiently estimate the damage performed by poisoning a given training instance. The attack relies on a tree annotation procedure which enables sorting training instances so that they are processed in increasing order of computational cost of sub-tree retraining. This sorting yields a variant of Timber supporting an early stopping criterion designed to make poisoning attacks more efficient and feasible on larger datasets. We also discuss an extension of Timber to traditional random forest models, which is useful because decision trees are normally combined into ensembles to improve their predictive power. Our experimental evaluation on public datasets shows that our attacks outperform existing baselines in terms of effectiveness, efficiency or both. Moreover, we show that two representative defenses can mitigate the effect of our attacks, but fail at effectively thwarting them.
Evaluating the Role of Data Enrichment Approaches Towards Rare Event Analysis in Manufacturing
Shyalika, Chathurangi, Wickramarachchi, Ruwan, Kalach, Fadi El, Harik, Ramy, Sheth, Amit
Rare events are occurrences that take place with a significantly lower frequency than more common regular events. In manufacturing, predicting such events is particularly important, as they lead to unplanned downtime, shortening equipment lifespan, and high energy consumption. The occurrence of events is considered frequently-rare if observed in more than 10% of all instances, very-rare if it is 1-5%, moderately-rare if it is 5-10%, and extremely-rare if less than 1%. The rarity of events is inversely correlated with the maturity of a manufacturing industry. Typically, the rarity of events affects the multivariate data generated within a manufacturing process to be highly imbalanced, which leads to bias in predictive models. This paper evaluates the role of data enrichment techniques combined with supervised machine-learning techniques for rare event detection and prediction. To address the data scarcity, we use time series data augmentation and sampling methods to amplify the dataset with more multivariate features and data points while preserving the underlying time series patterns in the combined alterations. Imputation techniques are used in handling null values in datasets. Considering 15 learning models ranging from statistical learning to machine learning to deep learning methods, the best-performing model for the selected datasets is obtained and the efficacy of data enrichment is evaluated. Based on this evaluation, our results find that the enrichment procedure enhances up to 48% of F1 measure in rare failure event detection and prediction of supervised prediction models. We also conduct empirical and ablation experiments on the datasets to derive dataset-specific novel insights. Finally, we investigate the interpretability aspect of models for rare event prediction, considering multiple methods.